

咖哥,上次你教的STP Dispute保护 STP还有其他保护功能吗?我也想学

边缘端口配合 BPDU保护功能

当交换机端口直接与用户终端相连,而没有连 接到其他网桥或局域网网段上时,该端口为边缘端 口。边缘端口不会产生临时环路,所以可以略过两 个Forward Delay时间,直接进入转发状态。由于 交换机无法自动判断端口是否直接与终端相连,所 以用户需要手工通过命令stp edged-port将与终端 连接的端口配置为边缘端口。

由于终端不会发出BPDU,所以当边缘端口收到

BPDU时,交换机自动将此端口设置为非边缘端

口,重新计算生成树,引起网络拓扑结构的变化。

如果有人伪造BPDU向边缘端口发起恶意攻击,就 会引起网络震荡。 生成树协议提供了BPDU保护功能来防止这种攻 击:开启了BPDU保护功能后,如果边缘端口收到 了BPDU,交换机将关闭该端口以防止攻击或环 路。 下面通过实验来说明BPDU保护功能。 实验过程及分析:

实验拓扑如下图所示,所有设备和接口开启 STP,Access-1、Access-2与终端互联接口配置为 边缘端口,并开启BPDU保护。实验通过三种不同 场景下的环路连接测试BPDU保护情况。 场景一:接入设备单端口下联设备存在环路

Access-1 Access-2

G1/0/1 G1/0/3 G1/0/1 Access-3 G1/0/3 观察Access-2和Access-3两台设备上的日志发

现,Access-2上STP边缘端口G1/0/3收到BPDU后

BPDU保护功能生效,G1/0/3被关闭从而防止了环

Access-3的Log记录:

%Apr 3 07:23:59:603 2000 client IFNET/3/LINK_UPDOWN:

场景二:接入设备自身端口环路

Access-1

G1/0/1

Leaf

Access-2

G1/0/17

G1/0/3

路。

GigabitEthernet1/0/3 link status is UP. %Apr 3 07:23:59:725 2000 client IFNET/3/LINK_UPDOWN: GigabitEthernet1/0/5 link status is UP. %Apr 3 07:24:01:241 2000 client IFNET/3/LINK UPDOWN: GigabitEthernet1/0/1 link status is DOWN. Access-2的Log记录: %Jan 2 04:29:38:838 2011 Access-2 STP/4/STP BPDU PROTECTION: BPDU-Protection port Ten-GigabitEthernet1/0/3 received BPDUs. %Jan 2 04:29:38:846 2011 Access-2 IFNET/3/PHY UPDOWN: Physical state on the interface Ten-GigabitEthernet1/0/3 changed to down. %Jan 2 04:29:38:847 2011 Access-2 IFNET/5/LINK UPDOWN: Line protocol state on the interface Ten-GigabitEthernet1/0/3 changed to down.

Access-2的G1/0/3和G1/0/17接口互联,形成 环路。观察Access-2上的日志发现边缘端口G1/0/3 收到BPDU后BPDU保护功能生效,G1/0/3被关闭 从而防止了环路。 Access-2的Log记录: %Jan 2 04:31:34:362 2011 Access-2 STP/4/STP BPDU PROTECTION: BPDU-Protection port Ten-GigabitEthernet1/0/3 received BPDUs.

%Jan 2 04:31:34:371 2011 Access-2 IFNET/3/PHY_UPDOWN: Physical state

%Jan 2 04:31:34:372 2011 Access-2 IFNET/5/LINK_UPDOWN: Line protocol

%Jan 2 04:31:34:378 2011 Access-2 IFNET/3/PHY_UPDOWN: Physical state

%Jan 2 04:31:34:381 2011 Access-2 IFNET/5/LINK UPDOWN: Line protocol

on the interface Ten-GigabitEthernet1/0/3 changed to down.

state on the interface Ten-GigabitEthernet1/0/3 changed to down.

state on the interface Ten-GigabitEthernet1/0/17 changed to down.

on the interface Ten-GigabitEthernet1/0/17 changed to down.

场景三:接入设备间环路

G1/0/3被关闭从而防止了环路。

Access-2的Log记录:

咖哥点评:

路。

起业务中断。

G1/0/15 G1/0/3 Access-1的G1/0/15和Access-2的G1/0/3端口 互联,形成环路。观察Access-2的日志发现STP边 缘端口G1/0/3收到BPDU后BPDU保护功能生效,

%Jan 2 04:33:15:950 2011 Access-2 STP/4/STP_BPDU_PROTECTION: BPDU-

%Jan 2 04:33:15:956 2011 Access-2 IFNET/3/PHY_UPDOWN: Physical state

%Jan 2 04:33:15:956 2011 Access-2 IFNET/5/LINK_UPDOWN: Line protocol

1. BPDU保护功能仅可以用来阻断与边缘端口

2. 被阻断的边缘端口默认30S被重新激活,可

之间的环路,无法有效阻止与<mark>非边缘端口</mark>之间的环

以通过命令undo shutdown手动恢复,也可以通过

命令stp port shutdown permanent配置被BPDU保

护功能关闭的边缘端口不再自动恢复。

Protection port Ten-GigabitEthernet1/0/3 received BPDUs.

on the interface Ten-GigabitEthernet1/0/3 changed to down.

state on the interface Ten-GigabitEthernet1/0/3 changed to down.

根保护功能 各位小学徒是否遇到过新上线一台接入设备导 致核心网络异常中断?是否听说过将核心设备配置 为根桥但并未生效? 由于错误配置或网络恶意攻击等原因,STP合 法根桥有可能会收到优先级更高的BPDU,这样合 法根桥会失去根桥的地位,STP拓扑将重新收敛, 收敛过程中各设备端口无法正常转发报文,从而引

为了防止这种情况发生,生成树协议提供了根

保护功能:对于开启了根保护功能的端口,其端口

角色只能为指定端口。一旦该端口收到优先级更高

的BPDU,该端口将被置为侦听状态,不再转发报

文。当在2倍的Forward Delay时间内没有收到更优

实验拓扑如下图所示,所有设备及端口均开启

DPG1/0/3

G1/0/1

STP,SW1被选举为根桥,各个端口的STP角色如

G1/0/1

G1/0/1

更 改 SW5 的 STP 优 先 级 为 0 , 模 拟 高 优 先 级

当SW4收到这个BPDU报文后进行比较,发现

整个过程会导致生成树以SW5为新的根桥重新

Role STP State Protection

Role STP State Protection

Role STP State Protection

DESI FORWARDING NONE

DESI FORWARDING NONE

DESI FORWARDING NONE

ROOT FORWARDING NONE

ROOT FORWARDING NONE

BPDU报文攻击,此时SW5会重新计算生成自己的

BPDU报文。SW5比较收到BPDU报文与自身生成

BPDU报文的优先级,发现自己更优,于是会发送

SW5发送的BPDU报文优先级更高,于是更新自己

收敛,阻塞端口由SW4 G1/0/1变为SW3 G1/0/1,

流量转发路径发生改变。更重要的是,在拓扑收敛

过程中,各设备端口无法正常转发数据报文,在现

的BPDU为SW5的内容并发给根桥SW1。

SW1 - 根桥

的BPDU时,端口恢复原来的正常状态。

实验过程及分析:

G1/0/2 DP

一个更优的BPDU报文出去。

网中将引起业务中断。

GigabitEthernet1/0/1

GigabitEthernet1/0/1 GigabitEthernet1/0/2

GigabitEthernet1/0/3

GigabitEthernet1/0/1

SW1和其他设备的拓扑稳定:

GigabitEthernet1/0/1

GigabitEthernet1/0/3

GigabitEthernet1/0/4

咖哥点评:

出现抢根的情况。

生环路。

路的产生。

实验过程及分析:

[SW4]dis stp brief MST ID Port

0

0

[SW4-GigabitEthernet1/0/4]stp root-protection

SW5: (变为根桥) [SW5]stp priority 0 [SW5]dis stp brief

MST ID Port

(被抢根) [SW1]dis stp brief MST ID Port

[SW2]dis stp brief MST ID Port

[SW3]dis stp brief

SW1:

SW2:

SW3:

下面通过实验来说明根保护功能。

图所示,其中SW4的G1/0/1处于阻塞状态。

G1/0/2 G1/0/1 SW₃ SW2 G1/0/4 SW5

MST ID Port Role STP State Protection GigabitEthernet1/0/1 ALTE DISCARDING NONE GigabitEthernet1/0/2 **ROOT FORWARDING NONE** SW4: [SW4]dis stp brief MST ID Port Role STP State Protection DESI FORWARDING NONE GigabitEthernet1/0/1 0 GigabitEthernet1/0/3 DESI FORWARDING NONE GigabitEthernet1/0/4 **ROOT FORWARDING NONE** 在SW4的G1/0/4配置根保护功能后,当SW4收 到SW5发出的更高优先级BPDU报文后,会强制保 持 G1/0/4 为 指 定 端 口 并 设 为 侦 听 状 态 , 从 而 保 证 SW5发出的高优先级报文不会继续向上传播,维持 SW1的根桥地位不变。 此 时 查 看 各 端 口 的 STP 角 色 和 状 态 , SW4 的

G1/0/4 触 发 根 保 护 功 能 被 阻 塞 , 从 而 保 证 了 核 心

%Jan 22 02:26:05:597 2021 SW4 STP/4/STP ROOT PROTECTION: Instance 0's ROOT-Protection port GigabitEthernet1/0/4 received superior BPDUs.

Role STP State Protection

1. 根保护功能的本质是通过阻塞收到高优先级

BPDU的指定端口来达到保护根桥的目的。如果一

个端口一直收到高优先级BPDU报文,那么这个端

口就会一直处于阻塞状态,在没有备份链路的情况

备上线之前检查网络中相关设备的STP配置,避免

环路保护功能

设备的端口收不到上游设备的BPDU时,会重新选

择端口角色。收不到BPDU的下游设备端口会转变

为指定端口,阻塞端口会迁移到转发状态,从而产

了环路保护功能的端口上,其初始状态为阻塞状

态,如果该端口收到了BPDU,则进行正常的状态

迁移;否则,该端口将一直处于阻塞状态以避免环

实验拓扑如下图所示,所有设备及端口均开启

G1/0/3

G1/0/

G1/0/2

STP,SW1被选举为根桥,各个端口的STP角色如

SW1 - 根桥

成指定端口并处于转发状态,G1/0/2变为了根端口

也处于转发状态,整个拓扑每个端口都处于转发状

SW4上产生如下STP历史记录:

----- STP slot 1 history trace --------- Instance 0

> : ALTE->ROOT : 2021/01/22 18:29:24

下面通过实验来说明环路保护功能。

图所示,其中SW4的G1/0/2处于阻塞状态。

环路保护功能会抑制这种环路的产生: 在开启

由于链路拥塞或者单向链路故障等问题,下游

2. 在现网应用中,建议通过命令指定根桥,设

下,这个端口下的业务就会受到持续影响。

ALTE DISCARDING NONE

ROOT FORWARDING NONE

DESI DISCARDING ROOT (根保护)

关闭根桥SW1 G1/0/3的STP功能来模拟SW1 和 SW4 之 间 BPDU 报 文 单 通 的 情 况 。 此 时 SW4 G1/0/1由于收不到根桥的BPDU报文,从根端口变

G1/0/2

G1/0/1

DP G1/0/2

SW3

态,产生环路。

[SW4]dis stp history

Role change

止了环路的产生。

configuration BPDUs.

GigabitEthernet1/0/1

咖哥点评:

功能是没有效果的。

GigabitEthernet1/0/2

[SW4]dis stp brief MST ID Port

SW4:

[SW4-GigabitEthernet1/0/1]stp loop-protection

Port GigabitEthernet1/0/2

Port priority : 0.6c2a-762f-0100 20 32768.7899-5109-0600 0 32768.720d-da2e-0300 128.3 128.3 Designated priority: 0.6c2a-762f-0100 40 32768.7899-5109-0600 0 32768.7899-5109-0600 128.3 128.3 Port GigabitEthernet1/0/1 ROOT->DESI (Aged) Role change : 2021/01/22 18:29:24 Time Port priority : 0.6c2a-762f-0100 0 32768.7899-5109-0600 0 0.6c2a-762f-0100 128.4 128.2 Designated priority: 0.6c2a-762f-0100 40 32768.7899-5109-0600 0 32768.7899-5109-0600 128.2 128.2 [SW4]dis stp brief Role STP State Protection MST ID Port **DESI FORWARDING NONE** GigabitEthernet1/0/1 **ROOT FORWARDING NONE** GigabitEthernet1/0/2 在SW4 G1/0/1开启环路保护功能后,继续模拟 BPDU报文单通的情况。此时查看SW4的端口状态

发现G1/0/1变成了指定端口并被置于阻塞状态,防

%Jan 22 03:06:09:382 2021 SW4 STP/4/STP_LOOP_PROTECTION: Instance

Role STP State Protection

ROOT FORWARDING NONE

DESI DISCARDING LOOP (触发环路保护)

0's LOOP-Protection port GigabitEthernet1/0/1 failed to receive

护功能,否则该端口会因收不到BPDU而一直处于 阻塞状态。 -个端口上不能同时配置边缘端口和环路 保 护 功 能 , 或 同 时 配 置 根 保 护 功 能 和 环 路 保 护 功 能。 3. 在已经发生环路的情况下,再配置环路保护

1. 不能在与用户终端相连的端口上开启环路保

STP保护功能小节 1. 边缘端口开启了BPDU保护功能后,如果收 到了BPDU,该端口将被关闭。 2. 端口开启了根保护功能后,如果收到了优先 级更高的BPDU,该端口将被置为阻塞状态。

BPDU,该端口将被置为阻塞状态。

3. 端口开启了环路保护功能后,如果未收到

-— end ——