H3C SR6600/SR6600-X 路由器 故障处理手册(V7)

资料版本: 6W101-20180327

产品版本: R7606

Copyright © 2018 新华三技术有限公司 版权所有,保留一切权利。 非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部, 并不得以任何形式传播。本文档中的信息可能变动,恕不另行通知。

目录	
1 简介	
1.1 故障处理注意事项	1
1.2 收集设备运行信息	1
1.3 故障处理求助方式	5
2 CPOS口故障处理 ······	1
2.1 CPOS接口物理DOWN,串口物理DOWN,协议DOWN	1
2.2 串口协议震荡或流量不通问题	2
2.3 故障诊断命令	2
3 FIP-600 故障处理 ······	3
3.1 无法ping通直连设备问题	3
3.2 转发不通问题	4
3.3 转发丢包问题	5
3.4 故障诊断命令	5
4 POS口故障处理 ······	6
4.1 POS 接口物理状态为down	6
4.2 接口物理层up,链路层down	6
4.3 故障诊断命令	7
5 SAP故障处理	7
5.1 SAP板接口不UP	7
5.2 转发不通问题	7
5.3 转发丢包问题	8
5.4 故障诊断命令	8
6 IRF故障处理 ······	
6.1 两台设备无法组成IRF问题	8
6.2 转发不通问题	9
6.3 转发丢包问题	10
6.4 IRF分裂问题	10
6.5 故障诊断命令	11
7 单板故障处理	11
7.1 主控板或SR6602-X设备无法启动	11
7.2 业务板无法启动问题	16
7.3 故障诊断命令	

8 光模块故障处理
8.1 接口down18
8.2 打印光模块类型不识别19
8.3 打印告警信息19
8.4 故障诊断命令
9 以太接口故障处理
9.1 无法ping通直连设备问题20
9.2 转发不通问题21
9.3 转发丢包问题21
9.4 故障诊断命令
10 主备倒换故障处理
10.1 重启主用主控板时备用主控板也重启23
10.2 备用主控板意外变成主用主控板23
10.3 故障诊断命令
11 子卡故障处理
11.1 子卡接口不可见24
11.2 子卡不在位
11.3 故障诊断命令
12 NetStream无法正常统计报文故障处理 ······· 26
12.1 主备链路切换后再切回来NetStream无法正常统计报文
12.2 故障诊断命令
13 IPv6 NetStream无法正常统计报文故障处理 ····································
13.1 主备链路切换后再切回来IPv6 NetStream无法正常统计报文
13.2 故障诊断命令

1 简介

本文档介绍 SR6600/SR6600-X 路由器软件和硬件常见故障的诊断及处理措施。

1.1 故障处理注意事项

🥂 注意

设备正常运行时,建议您在完成重要功能的配置后,及时保存并备份当前配置,以免设备出现故障 后配置丢失。建议您定期将配置文件备份至远程服务器上,以便故障发生后能够迅速恢复配置。

在进行故障诊断和处理时,请注意以下事项:

- 设备出现故障时,请尽可能全面、详细地记录现场信息(包括但不限于以下内容),收集信息
 越全面、越详细,越有利于故障的快速定位。
 - 。 记录具体的故障现象、故障时间、配置信息。
 - o 记录完整的网络拓扑,包括组网图、端口连接关系、故障位置。
 - 。收集设备的日志信息和诊断信息(收集方法见<u>1.2收集设备运行信息</u>)。
 - o 记录设备故障时单板、电源、风扇指示灯的状态,或给现场设备拍照记录。
 - 。 记录现场采取的故障处理措施(比如配置操作、插拔线缆、手工重启设备)及实施后的现象效果。
 - o 记录故障处理过程中配置的所有命令行显示信息。
- 更换和维护设备部件时,请佩戴防静电手腕,以确保您和设备的安全。
- 故障处理过程中如需更换硬件部件,请参考与软件版本对应的版本说明书,确保新硬件部件和 软件版本的兼容性。

1.2 收集设备运行信息

为方便故障快速定位,请使用命令 info-center enable 开启信息中心。缺省情况下信息中心处于开 启状态。

设备运行过程中会产生 logfile、diagfile 日志信息及记录设备运行状态的诊断信息。这些信息存储在 设备的 Flash 或 CF 卡中,可以通过 FTP、TFTP、USB 等方式导出。不同主控板或设备中导出的 logfile、diagfile、诊断信息文件请按照一定规则存放(如不同的文件夹: chassisXslotY),避免不 同主控板或设备的运行信息相互混淆,以方便查询。

表1-1 设备运行信息介绍

分类	文件名	内容	
logfile日志	logfileX.log	命令行记录、设备运行中产生的记录信息	
diagfile日志	diagfileX.log	设备运行中产生的诊断日志信息,如系统运行到错误流程时的参数值、 单板无法启动时的信息、主控板与接口板通信异常时的握手信息。	
诊断信息	XXX.gz	系统当前多个功能模块运行的统计信息,包括设备状态、CPU状态、内 存状态、配置情况、软件表项、硬件表项等 收集诊断信息会导致设备性能下降,请谨慎使用	

🕑 说明

对于 logfile 日志和 diagfile 日志,当日志文件写满,产生新的日志文件时,设备会将旧的日志文件 自动压缩成.gz 文件。

1.2.2 logfile日志

(1) 执行 logfile save 命令将日志文件缓冲区中的内容全部保存到日志文件中。日志文件缺省存储 在存储介质的 logfile 目录中。

<Sysname> logfile save

The contents in the log file buffer have been saved to the file cfa0:/logfile/logfile8.log

- (2) 查看主用主控板、备用主控板、IRF中主设备/从设备上各主用/备用主控板的日志文件数目和 名称。
- 主用主控板 logfile 日志:

<Sysname> dir cfa0:/logfile/ Directory of cfa0:/logfile 0 -rw- 21863 Jul 11 2013 16:00:37 logfile8.log

1021104 KB total (421552 KB free)

• 备用主控板 logfile 日志:

<Sysname> dir slot1#cfa0:/logfile/ Directory of slot1#cfa0:/logfile 0 -rw- 21863 Jul 11 2013 16:00:37 logfile8.log

1021104 KB total (421552 KB free)

 IRF下备框主控板 logfile 日志,如备框有两块主控板,则两块都需要检查:
 <Sysname> dir chassis2#slot0#cfa0:/logfile/ Directory of chassis2#slot0#cfa0:/logfile
 0 -rw- 21863 Jul 11 2013 16:00:37 logfile8.log

1021104 KB total (421552 KB free)

(3) 使用 FTP 或 TFTP 将日志文件传输到指定位置。

1.2.3 diagfile日志

```
    (1) 执行 diagnostic-logfile save 命令将诊断日志文件缓冲区中的内容全部保存到诊断日志文件
中。诊断日志文件缺省存储在存储介质的 diagfile 目录中。
    <Sysname> diagnostic-logfile save
    The contents in the diagnostic log file buffer have been saved to the file
cfa0:/diagfile/diagfile18.log
```

- (2) 查看主用主控板、备用主控板、IRF中主设备/从设备上各主用/备用主控板的诊断日志文件数目和名称。
- 主用主控板 diagfile 日志:

```
<Sysname> dir cfa0:/diagfile/
Directory of cfa0:/diagfile
0 -rw- 161321 Jul 11 2013 16:16:00 diagfile18.log
```

1021104 KB total (421416 KB free)

• 备用主控板 diagfile 日志:

```
<Sysname> dir slot1#cfa0:/diagfile/
Directory of slot1#cfa0:/diagfile
0 -rw- 161321 Jul 11 2013 16:16:00 diagfile18.log
```

1021104 KB total (421416 KB free)

 IRF 下各成员设备主控板 diagfile 日志,如果成员设备有两块主控板,则两块都需要检查:
 <Sysname> dir chassis2#slot0#cfa0:/diagfile/ Directory of chassis2#slot0#cfa0:/diagfile
 0 -rw 161321 Jul 11 2013 16:16:00
 diagfile18.log

1021104 KB total (421416 KB free)

(3) 使用 FTP 或 TFTP 将日志文件传输到指定位置。

1.2.4 诊断信息

诊断信息可以通过两种方式收集:将诊断信息保存到文件,或者将诊断信息直接显示在屏幕上。为 保证信息收集的完整性,建议您使用将诊断信息保存到文件的方式收集诊断信息。 需要注意的是,设备上单板越多,诊断信息收集的时间越长,信息收集期间不能输入命令,请耐心 等待。

🕑 说明

通过 Console 口收集诊断信息所用的时间比通过业务网口收集所用的时间要长。在有可用业务网口 或管理口的情况下,建议通过业务网口或管理口登录和传输文件。 (1) 执行 screen-length disable 命令,以避免屏幕输出被打断(如果是将诊断信息保存到文件中, 则忽略此步骤)。 <Sysname> screen-length disable 执行 display diagnostic-information 命令收集诊断信息。 (2) <Sysname> display diagnostic-information Save or display diagnostic information (Y=save, N=display)? [Y/N] : (3) 选择将诊断信息保存至文件中,还是将直接在屏幕上显示 输入"Y",以及保存诊断信息的路径和名称,将诊断信息保存至文件中。 Save or display diagnostic information (Y=save, N=display)? [Y/N] : Y Please input the file name(*.tar.gz)[cfa0:/diag.tar.gz] :cfa0:/diag.tar.gz Diagnostic information is outputting to cfa0:/diag.tar.gz. Please wait... Save successfully. <Sysname> dir cfa0:/ Directory of cfa0: б -rw-898180 Jun 26 2013 09:23:51 diag.tar.gz 1021808 KB total (259072 KB free) 输入"N",将诊断信息直接显示在屏幕上。 Save or display diagnostic information (Y=save, N=display)? [Y/N] :N _____ No alarm information. -----Software images on slot 0: Current software images: cfa0:/SR6600-X-CMW710-BOOT-R7328_mrpnc.bin cfa0:/SR6600-X-CMW710-SYSTEM-R7328_mrpnc.bin Main startup software images: cfa0:/SR6600-X-CMW710-BOOT-R7328 mrpnc.bin cfa0:/SR6600-X-CMW710-SYSTEM-R7328_mrpnc.bin Backup startup software images: None _____ Total (pkts) Broadcast (pkts) Multicast (pkts) Err (pkts) Interface BAGG1 0 0 0 0 GE4/0/1 0 0 0 0 GE4/0/2 2 2 0 0 GE4/0/3 0 0 0 0 GE4/0/40 0 0 0 GE4/0/5 0 0 0 0 GE4/0/6 0 0 0 0

0

0

0

0

GE4/0/7

GE4/0/8	0	0	0	0
GE4/0/9	0	0	0	0
GE4/0/10	0	0	0	0

1.3 故障处理求助方式

•••••

当故障无法自行解决时,请准备好设备运行信息、故障现象等材料,发送给 H3C 技术支持人员进行故障定位分析。

用户支持邮箱: service@h3c.com

技术支持热线电话: 400-810-0504 (手机、固话均可拨打)

2 CPOS口故障处理

2.1 CPOS接口物理DOWN,串口物理DOWN,协议DOWN

2.1.1 故障描述

直连其他设备的 CPOS 接口物理状态为 DOWN,或通道生成的串口物理状态为 DOWN,或协议状态为 DOWN。

2.1.2 故障处理步骤

- (1) 通过 display controller cpos interface-name 命令收集指定 CPOS 接口信息,查看接口状态 是否 UP。如果 CPOS 接口物理状态为 down,则查看是否存在段告警信息,如果段告警信息 里有 LOS、LOF 这类的告警,需要检查光纤是否连接正常,接口两端是否至少有一端配置了 clock master 命令。
- (2) 如果 CPOS 接口物理状态为 UP, 串口物理 DOWN,则需要通过 display controller cpos interface-name 命令查看串口所属的通道是否有告警,如果串口所属的通道无告警信息,则 可能是由于在串口上执行了 shutdown 命令,请通过 display interface serial interface-number命令查看,如果状态为 DOWN(Administratively),请使用 undo shutdown 命令开启接口。
- (3) 如果串口物理状态为 UP,协议状态为 down,首先通过 display interface serial *interface-number* 命令,收集串口的报文收发统计信息,该统计是基于硬件,确认 CPOS 的 HDLC 芯片是否正常工作。
- (4) 如果上述步骤无法具体定位故障,则收集如下信息,并联系 H3C 技术支持人员。
- 打开两个设备上的 physical 调试开关 debugging physical packet, 查看报文收发是否存在 异常情况。
- 在 probe 视图下,通过 **display hardware internal module cpos** *interface-number* **statistics** 命令收集控制口统计信息。
- 在 probe 视图下,通过 display hardware internal module cpos *interface-number* reg 0 命 令收集接口 CPLD 信息。
- 在 probe 视图下,通过 display hardware internal module cpos *interface-number* reg 1 命 令收集接口 FPGA 信息。
- 在 probe 视图下,通过 display hardware internal module cpos interface-number reg 2、 display hardware internal module cpos interface-number reg 3 和 display hardware internal module cpos interface-number reg 4 命令收集接口的芯片寄存器信息。
- 在 probe 视图下, 通过 **display hardware internal module serial** *interface-number statistic* 命令收集串口的统计信息。
- 在 probe 视图下,通过命令 **display hardware internal module cpos** *interface-number* **statistics** 命令查看子卡的 FPGA 的收发统计是否正常。

• 在 probe 视图下,通过 display hardware internal module serial *interface-number* statistics 命令查看串口的 CPU 软件统计是否正常。

2.2 串口协议震荡或流量不通问题

2.2.1 故障描述

串口协议震荡,或转发不通。

2.2.2 故障处理步骤

- (1) 请确认是否是串口物理down引起,如果是,请参考 2.1.2 (2)。
- (2) 如果上述步骤无法具体定位故障,则收集如下信息,并联系 H3C 技术支持人员。
- 在 probe 视图下,通过 display hardware internal module *interface-number* 命令查看串口 是否有接收或发送的错包统计。
- 打开两个设备上的 physical 调试开关 debugging physical packet, 查看报文收发是否存在 异常情况。
- 在 probe 视图下,通过 **display hardware internal module cpos** *interface-number* statistics 命令收集控制口统计信息。
- 在 probe 视图下,通过 display hardware internal module cpos *interface-number* reg 0 命 令收集接口 CPLD 信息。
- 在 probe 视图下,通过 display hardware internal module cpos *interface-number* reg 1 命 令收集接口 FPGA 信息。
- 在 probe 视图下,通过 display hardware internal module cpos interface-number reg 2、 display hardware internal module cpos interface-number reg 3 和 display hardware internal module cpos interface-number reg 4 命令收集接口的芯片寄存器信息
- 在 probe 视图下, 通过 **display hardware internal module serial** *interface-number* **statistic** 命令收集串口的统计信息。
- 在 probe 视图下, 通过 **display hardware internal module cpos** *interface-number* **statistics** 命令查看子卡的 FPGA 的收发统计是否正常。
- 在 probe 视图下,通过 display hardware internal module serial *interface-number* statistics 命令查看串口的 CPU 软件统计是否正常。

2.3 故障诊断命令

命令	说明	
display controller cpos interface-name	显示CPOS物理接口状态信息,以及再生段、复用 段和高阶通道的告警及错误信息	
clock master	设置CPOS接口的时钟模式为主时钟模式	
display interface serial interface-number	显示Serial接口的相关信息	
debugging physical packet	打开设备physical调试开关	
display hardware internal module interface-name	查看接口可维护统计信息	

命令	说明	
interface-number statistics		
display hardware internal module interface-name interface-number status	查看接口状态信息	
display hardware internal module interface-name interface-number message	查看接口配置信息	
display hardware internal module <i>interface-name</i> <i>interface-number</i> reg { 0 1 2 3 4}	查看接口硬件寄存器信息	
undo shutdown	打开接口	

3 FIP-600 故障处理

3.1 无法ping通直连设备问题

3.1.1 故障描述

无法 ping 通与 FIP-600 直连的设备。

3.1.2 故障处理步骤

- (1) 通过 display interface 命令收集指定接口信息, 查看:
- 接口状态是否 UP。
- 接口收发包统计是否正常,有无错包和丢包统计等。如果有错包统计,可以先排除是否线缆问 题或接口故障。
- (2) 通过 display arp all 命令查看是否学到直连接口的 ARP,如果没有,通过 debugging arp packet 命令打开两台设备上的 ARP 调试开关,查看 ARP 报文收发是否存在异常情况。
- (3) 在 probe 视图下,通过 debugging hardware internal fdp cdat slot slot-num debug { ingress | egress }命令查看 CPU 数据通道接口接收和发送报文的 debug 信息,前 32 字节 为逻辑互通头信息,后 32 字节为报文内容。可以通过选择接口或报文长度等参数,对要打印 报文进行过滤。可以联系 H3C 技术支持人员确认流量上送 CPU 的具体原因。
- (4) probe 视图下,通过 display hardware internal fdp cdat slot slot-num statistics 命令收集 CPU 数据通道统计信息。该命令可以查看 CPU 上和逻辑之间的报文收发统计和速率。选择 参数 4 可以查看详细统计信息,包括基于 VCPU 的各项统计。
- (5) 在 probe 视图下,通过 display hardware internal fdp cdat slot slot-num statistics 8 命令 收集 CPU 和逻辑内部丢包统计信息,如果有丢包计数,请联系 H3C 技术支持人员确认丢包 原因。
- (6) 在 probe 视图下,通过 display hardware internal fdp cdat slot *slot-num* statistics 80 命令 收集逻辑内部统计信息。如果有 Drop 统计,请联系 H3C 技术支持人员确认丢包原因。
- (7) 在 probe 视图下,通过 display hardware internal fdp cdat slot *slot-num* statistics 100 命 令收集 CPU 数据通道接口统计信息。

- (8) 在 probe 视图下,通过 display hardware internal fdp flow slot *slot-num* statistic 命令收集 逻辑三层报文上送 CPU 统计信息,查看 Packet Statistics information 中是否存在存在错包或 失败统计,请联系 H3C 技术支持人员确认丢包原因。
- (9) 在 probe 视图下,通过 display hardware internal fdp cdat slot slot-num status 80 命令 查 看逻辑内部状态信息,在无流量情况下,如果 FIFO 状态非空,说明逻辑 FIFO 堵塞,请联系 H3C 技术支持人员定位。
- (10) 如果逻辑和 CPU 之间报文收发正常,需要参照软件转发定位手段,如是否有路由表等。
- (11) 在 probe 视图下,通过 display hardware internal nae slot *slot-num* freein 命令收集硬件信息,并联系 H3C 技术支持人员定位。

3.2 转发不通问题

3.2.1 故障描述

FIP-600 所在路由器作为中间设备转发流量时,流量转发不通。

3.2.2 故障处理步骤

- (1) 确认与直连设备是否可以ping通,如果不通,请参见"3.1 无法ping通直连设备问题"。
- (2) 在 probe 视图下,通过 display hardware internal fdp cdat slot slot-num statistics 命令收 集 CPU 数据通道统计信息。该命令可以查看 CPU 上和逻辑之间的报文收发统计和速率信息。 如果 CPU 接收报文速率与转发流量速率基本吻合,说明报文被逻辑上送到了 CPU 转发,此时:
- 如果 CPU 发送报文速率明显减小,说明报文被软件丢弃或透传到了主控板。
- 如果发送报文速率与接收报文速率基本一致,说明报文没有被软件丢弃,正常转发。
- 如果 CPU 接收报文速率很小,明显与转发流量速率不符,说明报文没有上送到 CPU。
- (3) 如果报文上送到了CPU, probe视图下 debugging hardware internal fdp cdat slot slot-num debug { ingress | egress }命令查看 CPU 数据通道接口接收和发送报文的 debug 信息,前 32 字节为逻辑互通头信息,后 32 字节为报文内容。可以通过选择接口或报文长度等参数,对 要打印报文进行过滤。可以联系 H3C 技术支持人员确认流量上送 CPU 的具体原因。
- (4) 如果报文被 CPU 丢弃,在 probe 视图下,通过 display hardware internal fdp cdat slot slot-num statistics 8 查看 CPU 丢包统计;通过 display hardware internal fdp flow slot slot-num statistic 收集逻辑三层报文上送 CPU 统计,查看 Packet Statistics information 中是 否存在错包或失败统计,如果有丢包统计,请联系 H3C 技术支持人员定位。
- (5) 在 probe 视图下,通过 display hardware internal fdp cdat slot slot-num statistics 8 命令 收集 CPU 和逻辑内部丢包统计信息,如果有丢包计数,请联系 H3C 技术支持人员确认丢包 原因。
- (6) 在 probe 视图下,通过 debugging hardware internal fdp cdat slot *slot-num* bypass interface 命令在转发入接口打开旁路逻辑功能,如果可以正常转发流量,可以确认为逻辑转发问题,请联系 H3C 技术支持人员定位。
- (7) 在 probe 视图下,通过 display hardware internal fdp cdat slot *slot-num* statistics 80 命令 收集逻辑内部统计信息。如果有 Drop 统计,请联系 H3C 技术支持人员确认丢包原因。

- (8) 在 probe 视图下,通过 display hardware internal fdp cdat slot slot-num status 80 命令 查 看逻辑内部状态信息,在无流量情况下,如果 FIFO 状态非空,说明逻辑 FIFO 堵塞,请联系 H3C 技术支持人员定位。
- (9) 如果逻辑和 CPU 之间报文收发正常,需要参照软件转发定位手段,如是否有路由表等。

3.3 转发丢包问题

3.3.1 故障描述

FIP-600转发流量有丢包问题。

3.3.2 故障处理步骤

- (1) 在 probe 视图下 display hardware internal fdp cdat slot *slot-num* statistics 收集 CPU 数 据通道统计。该命令可以查看 CPU 上和逻辑之间的报文收发统计和速率。
- 如果 CPU 接收报文速率与转发流量速率基本吻合,说明报文被逻辑上送到了 CPU 转发。
- 如果 CPU 接收报文速率很小,明显与转发流量速率不符,说明报文在逻辑转发。
- (2) 如果报文上送到了 CPU,在 probe 视图下通过 debugging hardware internal fdp cdat slot slot-num debug { ingress | egress }命令查看 CPU 数据通道接口接收和发送报文的 debug 信息,前 32 字节为逻辑互通头信息,后 32 字节为报文内容。可以通过选择接口或报文长度 等参数,对要打印报文进行过滤。可以联系 H3C 技术支持人员确认流量上送 CPU 的具体原因。
- (3) 如果报文在逻辑内部丢包,在 probe 视图下,通过 display hardware internal fdp cdat slot *slot-num* statistics 8 收集逻辑内部丢包统计信息。如果有丢包计数,请联系 H3C 技术支持 人员确认丢包原因。
- (4) 在 probe 视图下,通过 display hardware internal fdp cdat slot *slot-num* statistics 80 命令 收集逻辑内部统计信息。如果有 Drop 统计,请联系 H3C 技术支持人员确认丢包原因。

3.4 故障诊断命令

命令	说明	
display hardware internal fdp cdat slot slot-num statistics	显示CPU数据通道统计信息	
reset hardware internal fdp cdat slot slot-num statistics	清除CPU数据通道统计信息	
display hardware internal fdp cdat slot <i>slot-num</i> status 显示CPU数据通道状态信息		
debugging hardware internal fdp cdat slot slot-num debug 设置CPU数据通道报文Debug开关		
display hardware internal fdp flow slot slot-num statistic	显示三层报文驱动接收统计信息	
reset hardware internal fdp flow slot slot-num statistic	清除三层报文驱动接收统计信息	
debugging hardware internal fdp cdat slot <i>slot-num</i> bypass 设置旁路逻辑功能		
display hardware internal nae slot <i>slot-num</i> freein 显示CPU硬件Buffer池状态		

4 POS口故障处理

4.1 POS接口物理状态为down

4.1.1 故障描述

正常连接光纤后, POS 接口物理状态为 down。

4.1.2 故障处理步骤

- (1) 检查两端接口的时钟配置,如果设备采取 POS 接口直连相连时, POS 接口应配置一端使用主时钟模式,另一端使用从时钟模式。
- (2) 检查接口安装的光模块,确保光模块速率和接口匹配。
- (3) 检查两端接口的 frame-format 配置,确保两端配置相同。
- (4) 如果上述步骤无法具体定位故障,则通过 display interface pos *interface-number* 命令来查 看接口下的告警信息,
- 如果是 AIS 的告警,请检查接口两端的 flag 的配置是否正确。
- 如果是 LOS/LOF 的告警,请检查两端光纤光模块硬件是否正常。
- (5) 如果上述步骤无法具体定位故障,请联系 H3C 技术支持人员。

4.2 接口物理层up, 链路层down

4.2.1 故障描述

互通设备的 POS 接口物理层 up,链路层 down。

4.2.2 故障处理步骤

POS 接口物理层 up,链路层 down,主要是因为丢包导致无法正常协商。

- (1) 首先查看互通设备两端的报文收发情况,可以通过 debugging physical packet all interface pos 命令来确认是哪端设备的故障。
- (2) 确认故障设备后,先在接口下执行 reset counters interface pos 命令,清除接口统计,再收 集如下信息,并联系 H3C 技术支持人员:
- 在 probe 视图,通过 display hardware internal module pos *interface-number* statistic 命 令来查看统计信息。
- 在 probe 视图,通过 display hardware internal module pos interface-number reg 3 命令 和 display hardware internal module pos interface-number reg 1 命令来收集 PHY 和 FPGA 的配置信息。

4.3 故障诊断命令

命令	说明
debugging physical packet	开启报文调试开关
display hardware internal module interface-name interface-number statistics	查看接口可维护统计信息
display hardware internal module interface-name interface-number status	查看接口状态信息
display hardware internal module interface-name interface-number message	查看接口配置信息
display hardware internal module interface-name interface-number reg 1	查看接口FPGA信息
display hardware internal module interface-name interface-number reg 3	查看接口PHY信息
reset counters interface pos interface-number	清除POS接口的报文统计

5 SAP故障处理

5.1 SAP板接口不UP

5.1.1 故障描述

SAP 板接口不 UP。

5.1.2 故障处理步骤

- (1) 查看 SAP 板是否正常启动,接口是否被 shutdown,可执行 undo shutdown 命令。
- (2) 检查光模块和光纤线缆状态是否正常,有无损坏,是否插反,可调整光纤插头,或反复多插拔 几次,看情况是否改善。未改善可检查光模块和光纤型号是否兼容匹配。

5.2 转发不通问题

SAP 板流量转发不通。

5.2.1 故障处理步骤

- (1) 检查 SAP 板所在设备是否正常工作。
- (2) 确认配置是否正确,出入接口是否都UP。接口不UP,请参见"<u>5.1_SAP板接口不UP</u>"。
- (3) 在系统视图下,使用 display interface 命令查看接口状态和接口收发包统计是否正常,有无 错包和丢包统计等。
- (4) 如果收发包统计正常,检查其直连设备流量转发情况。如果直连设备流量转发存在异常,则通 过其直连设备的故障处理说明进行处理。

- (5) 如果接口收包正常,而发包失败或存在丢包,使用 debugging physical packet 命令打印上送 CPU 的报文信息。如果有报文信息打印,则说明报文被上送至 CPU。
- (6) 如果报文上送 CPU 后被丢弃,请联系 H3C 技术支持人员查看报文是否正确并定位丢包原因。
- (7) 如果报文未上送 CPU,进入 probe 视图,使用 bcm *slot chip* show/counter 命令查看丢包接口和丢包统计信息,并联系 H3C 技术支持人员进行定位。
- (8) 在 probe 视图下,使用 bcm *slot chip* l3/defip/show 命令查看路由表项是否正确,有无对应路 由,路由是否命中等,若不正确则联系 H3C 技术支持人员进行定位。

5.3 转发丢包问题

5.3.1 故障描述

SAP 板转发流量有丢包问题。

5.3.2 故障处理步骤

SAP板仅支持以太网接口, 丢包问题故障处理请参见"9.3 转发丢包问题"。

5.4 故障诊断命令

命令	说明
display interface interface-number	显示端口信息
display counters { inbound outbound } interface	显示接口的流量统计信息
reset counters interface	清除接口的流量统计信息
bcm <i>slot chip</i> show/counter	显示接口流量统计和速率
debugging physical packet [all input output] interface interface-number	显示上送CPU的报文信息
bcm slot chip I3/I3table/show	显示arp表项
bcm slot chip I3/defip/show	显示驱动路由表项信息

6 IRF故障处理

6.1 两台设备无法组成IRF问题

6.1.1 故障描述

两台设备无法组成 IRF。

6.1.2 故障处理步骤

- (1) 通过 display device 命令来看两台设备是否都是 IRF 模式,并且两台设备的成员编号分别为 1 和 2。
- (2) 通过 display irf configuration 查看两台设备是否都配置了 IRF 端口,并检查两个 IRF 端口 之间是否是用光纤或网线直连的。
- (3) 通过 display irf link 命令查看两个 IRF 端口是否都是 UP 的。
- (4) 在 probe 视图下,通过 display hardware internal wanirf ipc pkt-info chassis chassis-number slot slot-number interface-number 命令查看两个成员设备间的报文是否能 互通,若是没有报文统计,请确认设备上都使能了 irf-port-configuration active 命令;如果 有丢包计数,请联系 H3C 技术支持人员确认丢包原因。
- (5) 在 probe 视图下, 通过 display hardware internal wanirf topoinfo chassis *chassis-number* slot *slot-number* 命令, 查看 IRF 板状态, 若是没有 active 的 IRF 板请联系 H3C 技术支持人员确认原因。
- (6) 在 probe 视图下, 通过 display hardware internal wanirf portinfo chassis *chassis-number* slot *slot-number* 命令收集 IRF 物理端口状态和出接口选口信息, 若有异常请联系 H3C 技术 支持人员定位。
- (7) 在 probe 视图下,通过 display hardware internal wanirf stm debugging chassis chassis-number slot slot-number all on 命令收集 IRF 板收发的 STM 报文打印信息,联系 H3C 技术支持人员查看内容格式是否正确。
- (8) 在 probe 视图下,通过 display hardware internal wanirf stm pkt-info chassis *chassis-number* slot *slot-number* 命令 查看两台成员设备的主控是否有收发的 STM 报文。
- (9) 若果两个主控之间 STM 报文收发正常,请联系 H3C 技术支持人员定位。

6.2 转发不通问题

6.2.1 故障描述

流量跨框转发不通。

6.2.2 故障处理步骤

- (1) 两台设备构成 IRF 跨框转发,请先确认设备配置是否正确,出入接口是否都 UP。
- (2) 执行 display ip statistics chassis chassis-number slot slot-number 命令查看源板的报文 是否上送平台并由平台转发,若没有请联系 H3C 技术支持人员定位。
- (3) 在 probe 视图下,通过 display hardware internal ibd pkt-info chassis chassis-number slot slot-number verbose 命令收集源板到本成员设备 IRF 板的统计,查看本成员设备板间是否有 透传过去,若没有请联系 H3C 技术支持人员定位。
- (4) 在 probe 视图下,通过 display hardware internal wanirf ibd pkt-info chassis chassis-number slot slot-number interface-number 命令查看各成员设备的物理 IRF 口是否有 报文收发统计,若没有请联系 H3C 技术支持人员定位。

- (5) 在 probe 视图下,通过 display hardware internal wanirf ibd debugging chassis *chassis-number* slot *slot-number* all on 命令查看通过物理 IRF 口的 IBD 报文打印信息,查 看报文格式和内容是否正确。
- (6) 如果对端 IRF 口接收正常,再执行(3)过程的命令查看本框的堆叠板是否透传到了目的板。
- (7) 在 probe 视图下, 通过 display hardware internal module *interface-name* statistics 命令查 看出接口统计是否正常, 若有异常请联系 H3C 技术支持人员定位。

6.3 转发丢包问题

6.3.1 故障描述

跨框转发流量有丢包问题。

6.3.2 故障处理步骤

按照 6.2.2 查看各个环节是否有丢包统计即可,如有问题请联系开发人员定位。

6.4 IRF分裂问题

6.4.1 故障描述

两台 IRF 设备分裂。

6.4.2 故障处理步骤

IRF 分裂是由于两个成员设备的主用主控在 20s 内收不到包造成的,故障处理可分为如下步骤:

- (1) 通过 display irf link 查看查看 IRF 链路是否为 UP 状态,若不是 UP 状态检查是否为网线松 动或者 IRF 板重启了。
- (2) 在 probe 视图下,通过 display hardware internal wanirf portinfo chassis chassis-number slot slot-number 命令查看 IRF 物理端口状态和出接口选口信息是否还正确,若有异常请联系 H3C 技术支持人员定位。
- (3) 通过 display cpu-usage 命令 查看主控和堆叠板的 CPU 使用率是否过高, IPC 报文是经由堆 叠板和主控板的 CPU 处理的, 若是 CPU 使用率过高会造成其丢包导致分裂。
- (4) 在 probe 视图下,通过 display hardware internal wanirf ipc pkt-info chassis chassis-number slot slot-number interface-number 命令查看成员设备的 IRF 口发送和接收的 各种 IPC 报文是否有丢包统计,若有统计请联系 H3C 技术支持人员定位。
- (5) 在 probe 视图下,通过 display hardware internal wanirf ipc debugging chassis *chassis-number* slot *slot-number* all on 命令查看通过 IRF 物理口的 IPC 报文打印信息,查 看报文格式和内容是否正确。
- (6) 在 probe 视图下,通过 display hardware internal wanirf ipc sendpkt chassis chassis-number slot slot-number unicast chassis-number slot slot-number pkt-length pkt-number 命令测试一下主控到堆叠板的 IPC 是否是畅通的。
- (7) 在 probe 视图下,通过 debug stack show globalvariable slot *slot-number* 命令查看主控槽 位的 IRF 报文信息,收集并汇总给 H3C 技术支持人员。

(8) 在 probe 视图下,通过 display hardware internal wanirf stm pkt-info chassis chassis-number slot slot-number 命令详细的查看两框主控收发的相关 IRF 报文成功还是失 败,请联系 H3C 技术支持人员进一步定位。

6.5 故障诊断命令

命令	说明
debug stack show globalvariable slot slot-number	显示主控板槽位的IRF报文信息
display hardware internal wanirf ipc/ibd pkt-info chassis chassis-number slot slot-number phyport-num	显示IRF物理端口的IPC/IBD报文统计信息
reset hardware internal wanirf ipc/ibd pkt-info chassis chassis-number slot slot-number port-num	清除IRF物理端口的IPC/IBD报文统计信息
display hardware internal wanirf stm pkt-info chassis chassis-number slot slot-number	显示主控板IRF报文的收发统计信息
reset hardware internal wanirf stm pkt-info chassis chassis-number slot slot-number	清除主控板IRF报文的收发统计信息
display hardware internal wanirf portinfo chassis chassis-number slot slot-number	显示IRF端口的相应信息
display hardware internal wanirf topoinfo chassis chassis-number slot slot-number	显示拓扑相关的信息
display hardware internal wanirf ipc/ibd/stm debugging chassis chassis-number slot slot-number receive/send/all on/off	显示堆叠板IRF口的IPC/IBD/STM的报文内容调试 信息
display hardware internal wanirf ibd sendpkt chassis chassis-number slot slot-number unicast chassis chassis-number slot slot-number pkt-len pkt-num	IRF成员设备间任意两板之间发送IPC测试报文

7 单板故障处理

7.1 主控板或SR6602-X设备无法启动

7.1.1 故障描述

主控板(包括 RSE-X3、RPE-X3)或 SR6602-X 设备无法启动。

7.1.2 故障处理步骤

(1) 查看主控板或 SR6602-X 设备运行状态指示灯(RUN 灯)状态,设备正常启动后,RUN 灯状态 为快闪(8Hz)。若 RUN 灯不亮表示设备无电源输入或者 BootWare 基本段被破坏。

- 运行状态指示灯不亮是指上电后从来没亮过,如果开始闪了一会儿(超过5秒)后续又灭的,则 不算此情况。
- 设备上电后 RUN 灯就常亮或慢闪(1Hz)表示设备硬件故障。
- (2) 判断设备是否上电。检查风扇是否转动,也可以经过一段时间后,拔出主控板,检验 CPU 上的散热片是否有热度。如果没有上电,则检查供电、电源模块,设备硬件故障也会导致主控板不能上电。如果设备上电正常,则应该是 BootWare 基本段被破坏,请联系 H3C 技术支持人员进一步定位。
- (3) 检查 Bootware 基本段是否运行成功。
- 查看是否有如下信息,是则说明基本段运行成功。

System is starting...

Press Ctrl+D to access BASIC-BOOTWARE MENU...

- Press Ctrl+T to start memory test
- Booting Normal Extended BootWare

The Extended BootWare is self-decompressing.....Done.

```
Copyright (c) 2004-2018 New H3C Technologies Co., Ltd.
```

Compiled Date	:	Jan	18	2016
CPU Type	:	P202	20	
CPU L1 Cache	:	32KE	3	
CPU Clock Speed	:	1000)MHz	2
Memory Type	:	DDR3	S SI	ORAM
Memory Size	:	2048	8MB	
Memory Speed	:	8001	ĺHz	
BootWare Size	:	1024	KB	
Flash Size	:	8MB		
NVRAM Size	:	128K	CΒ	
BASIC CPLD Version	:	3.0		
EXTENDED CPLD Versic	n	2.0)	
PCB Version	:	Ver.	В	

没有任何输出信息表示内存或 CPU 故障。对于 RSE-X3/RPE-X3,可以将内存拔掉,查看启动后是否有如下信息:

RAM initialization failed

Fatal error! Please reboot the board.

若没有上述显示信息,则可能是 CPU 故障,请联系 H3C 技术支持人员进一步定位;若有打印,则 说明初始化内存时出现问题,可联系 H3C 技术支持人员更换内存条。

如果上电后打印如下类似信息,则可能是内存条有问题,也可能是内存通道的硬件电路出现问题,请联系 H3C 技术支持人员进一步定位。

readed value is 75555555 , expected value is 55555555

DRAM test fails at: 5ff80020

Fatal error! Please reboot the board.

☑ 说明:

以上信息是内存自检失败打印的。有时候系统因为异常发生热启动,内存控制器状态还未恢复,会 出现自检失败的情况(极小概率),此时重启设备就可以恢复。

• 若打印下面信息,则说明 BootWare 扩展段和备份扩展段不正确,BootWare 无法启动,此时 请升级扩展段。

System start booting...

Boot ROM program does not exist.

Now start to download program.

|<1> Modify Serial Interface Parameter

|<2> Update Extend BootWare

|<3> Update Full BootWare

<4> Boot Extend BootWare

<5> Boot Backup Extend BootWare

<0> Reboot

Enter your choice(0-5):

• 打印如下信息后没有反应,请联系 H3C 技术支持人员进一步定位。

System start booting...

Booting Normal Extend BootWare.....

(4) 查看加载启动程序是否正常。

显示如下信息,说明启动程序文件加载、解压成功。

Copyright (c) 2004-2018 New H3C Technologies Co., Ltd.

Compiled Date : Jan 18 2016 CPU Type : P2020 CPU L1 Cache : 32KB CPU Clock Speed : 1000MHz

Memory Type	:	DDR3 SDRAM
Memory Size	:	2048MB
Memory Speed	:	800MHz
BootWare Size	:	1024KB
Flash Size	:	8MB
NVRAM Size	:	128KB
BASIC CPLD Version	:	3.0
EXTENDED CPLD Versic	n:	2.0
PCB Version	:	Ver.B

BootWare Validating...

Press Ctrl+B to access EXTENDED-BOOTWARE MENU...

Loading the main image files...

Loading file flash:/SR6600-cmw710-system-test.bin.....

.....

.....

.....Done.

Loading file flash:/SR6600-cmw710-boot-test.bin.....

Image file flash:/SR6600-cmw710-boot-test.bin is self-decompressing.....

.....Done.

System image is starting...

Line aux1 is available.

Press ENTER to get started.

• 显示如下信息,表示启动程序文件不存在,需要重新下载启动程序文件。

Copyright (c) 2004-2018 New H3C Technologies Co., Ltd.

Compiled Date	:	Jan	18	2016
CPU Type	:	P202	0	
CPU L1 Cache	:	32KB		
CPU Clock Speed	:	1000	MHz	
Memory Type	:	DDR3	SE	RAM
Memory Size	:	2048	MB	
Memory Speed	:	800M	Hz	
BootWare Size	:	1024	KB	
Flash Size	:	8MB		
NVRAM Size	:	128K	В	
BASIC CPLD Version	:	3.0		
EXTENDED CPLD Versio	n:	2.0		

PCB Version	: Ver.B			
BootWare Validating				
Application program	does not exist.			
Please input BootWa	re password:			
 若显示如下信息 (如 CF 卡)中 	,表示获取的启动程序文件发生校验错,请重新下载启动程序文件到存储介质。			
*****	******************			
*	*			
*	H3C SR66 BootWare, Version 2.05 *			
*	*			
*****	* * * * * * * * * * * * * * * * * * * *			
Copyright (c) 2004-	2018 New H3C Technologies Co., Ltd.			
Compiled Date	: Jan 18 2016			
CPU Type	: P2020			
CPU L1 Cache	: 32KB			
CPU Clock Speed	: 1000MHz			
Memory Type	: DDR3 SDRAM			
Memory Size	: 2048MB			
Memory Speed	: 800MHz			
BootWare Size	: 1024KB			
Flash Size	: 8MB			
NVRAM Size	: 128KB			
EXTENDED COLD Version	· · · ·			
DCR Morgion	· Vor P			
PCB VEISION	· VEL.B			
BootWare Validating				
Press Ctrl+B to ent	er extended boot menu			
Starting to get the	<pre>main application filecfa0:/system.bin!</pre>			
Something wrong wit	h the file.			
(5) 检查启动程序启	动过程。			
• 没有 system 包,	,系统启动之后进入 boot 界面,对于这种情况,需要重新下载软件版本。			
Loading the main im	age files			
Loading file cfa0://	boot.bin			
	Done.			
<boot></boot>				

• 对于以下四类情况,请联系 H3C 技术支持人员进一步定位。

。 提示 System image is starting...,无任何其他输出。

- 。 提示 System image is starting...,未进入命令行界面,反复重启。
- 。 提示 Press ENTER to get started,但是无法进入命令行界面。
- 。可以进入命令行界面,但是一段时间之后自动重启。

7.2 业务板无法启动问题

7.2.1 故障描述

业务板无法正常启动。

7.2.2 故障处理步骤

(1) 查看业务板运行状态指示灯(RUN灯)是否亮,业务板正常启动后,RUN灯状态为快闪(8Hz)。 若 RUN灯没有亮表示业务板无电源输入或者业务板故障。

🕑 说明

- 运行状态指示灯不亮是指业务板上电后从来没亮过,如果开始闪了一会儿(超过5秒)后续又灭的,则不算此情况。
- 业务板上电后 RUN 灯就常亮或慢闪(1Hz)表示硬件故障。

(2) 若 RUN 灯没有点亮,有如下两种情况:

• 业务板不能上电

先通过 display device 命令查看设备是否上电。

<System> display device

Slot No.	Board type	Status	Primary	SubSlots
0	RSE-X3	Startup	Standby	0
1	RSE-X3	Normal	Master	0
-	102 110	1101.1101	11000001	
2	N/A	Absent	N/A	N/A
2	HTD 200	7.7 - 2 -	NT / 7	1
3	FIP-300	Wall	IN/A	1

如果 Status 状态为: Startup 表示单板上电,正在启动; Wait 表示系统功率不足无法上电。

在 probe 视图下,通过 display hardware internal sysm power-management 命令查看功率是否 足够。

[System-probe]display hardware internal sysm power-management

System	Power	Total	:	650	watts
System	Power	Used	:	150	watts
System	Power	Available	:	300	watts
System	Power	Per Unit	:	650	watts
System	Power	Reserved	:	200	watts
System	Power	AlarmFlag	:	0x00	00000

Slot	Board Type	Watts	Priority
0	DCF_V2	0(0)	0(0)
0	KSE-KS	0(0)	0(0)
1	RSE-X3	0(0)	0(0)
2	NA	0(0)	0(0)
3	FIP-300	150(0)*	5(-1)

如果功率够仍然无法上电,通过 display hardware internal sysm fip 命令查看详细状态,如果为 enable,则可能是业务板硬件存在故障,无法上电,更换槽位重新测试是否可以上电。

[System-probe]display hardware internal sysm fip

Slot	No.	State	Errcode	Flags	HwFlags
2		055	0	00	00
2		OII	0	0x0	UXU
2		onablo	0	0.22	0x42
2		enabre	0	0.2.5	0243

Flags :

bit0-PowerOn bit1-Present

bit2-ManuOn bit3-ManuOff

bit4-AutoOff bit5-Inserting

bit6-Enable

如果 Status 状态为: Fault 表示业务板 bom 码错误或该业务板在当前设备上不支持; Disable 表示 业务板被卸载,可以配置 undo remove slot 命令取消卸载业务板。

• BootWare 基本段被破坏

如果设备上电正常,则应该是 BootWare 基本段被破坏,请联系 H3C 技术支持人员进一步定位。

(3) 检查Bootware基本段是否运行成功,处理步骤参见"<u>7.1.2 (3)检查Bootware基本段是否运行</u> <u>成功。</u>"。

🕑 说明

FIP 板上也有类似主控板 Console 口的串口,是一个位于单板内部的 RJ45 口,称为调试串口。该 串口同 Console 口一样会打印 BootWare 的启动信息。由于需要连线到单板内部,需要该 FIP 板的 相邻槽位不插板子,留出走线的空间。

- (4) 查看加载启动文件是否正常。
 - IPC 不通,无法同步信息。
 Press Ctrl+B to enter extended boot menu.....
 Failed. No response received from the active MPU.
 GDSYNC_SendRequest: Start
 GDSYNC_SendRequest: Start
 GDSYNC_SendRequest: Start
 GDSYNC_SendRequest: Start

GDSYNC_SendRequest: Start

GDSYNC_Start failed!

SYNC failed.

- 一直打印上述信息,说明硬件 IPC 通道不通,需要更换槽位测试是否能否同步成功。
- 更换槽位可以成功,在原槽位换入一块新的业务板,看能够同步成功。如果无法成功,可
 能是主控板或该业务板槽位存在故障。如果可以成功,将故障单板重新插入该槽位测试。
- 。更换槽位也无法成功,使用新的业务板替代测试。如果无法成功,可能是主控或该业务板槽位存在故障。如果可以成功,该槽位的 IPC 通到存在故障。
- 主控板串口反复打印如下信息表示启动文件加载失败,需要确认当前使用的软件版本是否是正 式发布版本,该版本是否支持该业务板。

%Jul 17 14:01:48:947 2014 H3C DEV/3/LOAD_FAILED: -MDC=1; Board in slot 3 failed to load software images.

%Jul 17 14:01:48:948 2014 H3C DEV/3/LOAD_FAILED: -MDC=1; Board in slot 3 failed to load software images.

- (5) 检查启动文件启动过程,如出现如下情况请联系 H3C 技术支持人员进一步定位。
- 提示 System image is starting...无任何其他输出。
- 提示 System image is starting...有信息输出,一直挂死。
- 提示 System image is starting...反复重启。
- 提示 System image is starting...主控打印业务板 Change to Normal 信息之后,业务板反复重 启。

7.3 故障诊断命令

命令	说明
display device	显示设备信息

8.1 接口down

8.1.1 故障描述

光模块安装正确,光纤连接正常,接口物理 down 或者协议 down。

8.1.2 故障处理步骤

(1) 在 probe 视图下,通过 display hardware internal module *interface-type interface-numbe* reg 6 命令查看光模块在位状态是否正确。

- (2) 如果光模块在位,在 probe 视图下,通过 display transceiver information interface 命令查 看两端的光模块类型是否匹配,如果匹配,查看光模块类型是否与接口类型匹配。光模块必须 配对使用,光模块类型必须与接口类型匹配。
- (3) 查看光纤类型是否与光模块匹配,光纤光模块有单模多模之分,必须匹配使用。
- (4) 通过 display hardware internal module *interface-type interface-number* reg 0 查看 CPLD, 判断是否有收发故障, 查看是否硬件故障。
- (5) 如果上述步骤无法定位故障,请联系 H3C 技术支持人员。

8.2 打印光模块类型不识别

8.2.1 故障描述

Console 口打印光模块类型是 Unknow。

8.2.2 故障处理步骤

- (1) 在 Probe 视图下,通过 display hardware internal module interface-type interface-numbe reg 0 查看光模块是否是真模块,是否有电子标签;如果是伪模块,无法正确显示光模块类型, 并且 display transceiver manuinfo interface、display transceiver diagnosis interface 命令不可用。
- (2) 在 Probe 视图下,通过 display hardware internal transceiver register interface 命令可以读取光模块内部寄存器值,对比查看。
- (3) 如果上述步骤无法定位故障,请联系 H3C 技术支持人员。

8.3 打印告警信息

8.3.1 故障描述

接口打印告警信息,或者不断出现光模块插入拔出信息打印。

8.3.2 故障处理步骤

- (1) 查看板卡的 CPLD 版本,看是否升级到最新版本,特别是 HIM-TS8P。
- (2) 通过 display transceiver alarm interface 命令查看是否有告警,告警是否与打印信息匹配。 一般的告警信息,都是从 dware 统计来的,驱动只负责显示。

8.4 故障诊断命令

命令	说明
display transceiver alarm interface interface-name interface-number	查看光模块告警信息
display transceiver diagnosis interface interface-name interface-number	查看光模块诊断
display transceive interface interface-name interface-number	查看光模块基本信息

命令	说明
display transceiver information interface interface-name interface-number	查看光模块详细信息
display transceiver manuinfo interface-name interface-number	查看光模块制造信息
display hardware internal module interface-name interface-number reg 6	查看光模块驱动维护信息
display hardware internal transceiver register interface interface-name interface-number device device-index address address length length	读取光模块内部寄存器值

9 以太接口故障处理

9.1 无法ping通直连设备问题

9.1.1 故障描述

无法 ping 通与以太网接口直连的设备。

9.1.2 故障处理步骤

- (1) 通过 display interface 命令收集指定接口信息, 查看:
- 接口状态是否 UP。
- 接口两端速率双工是否匹配。
- 接口收发包统计是否正常,有无错包和丢包统计,如果有错包统计,可以先排除线缆问题或接口故障。
- 如果接口是光口查看两端光模块是否匹配。
- (2) 通过 display arp all 命令查看是否学到直连接口的 ARP 表项,如果没有,通过 debugging arp packet 命令打开两个设备上的 ARP 调试开关,查看 ARP 报文收发是否存在异常情况。
- (3) 通过 debugging ip packet 命令打开两台设备上的 IP 调试开关,查看 IP 报文收发是否存在 异常情况,通过 debugging ip icmp 命令打开 ICMP 调试开关,查看 ICMP 报文收发是否存 在异常情况。
- (4) 如果上述步骤无法具体定位故障,则收集如下信息,并联系 H3C 技术支持人员。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **statistics** 命令收集接口统计信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **status** 命令收集接口信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 1** 命令收集接口 FPGA 信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 2** 命令收集接口 MAC 信息。

- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 3** 命令收集接口 PHY 信息。
- 对于 FIP-300/FIP-310/SAP-16EXP,在 probe 视图下,通过 display hardware internal nae slot *slot-number* freein 命令收集接口硬件 buffer 池信息。
- 对于 FIP-240/SAP-4EXP,在 probe 视图下,通过 display hardware internal dpaa slot *slot-number* bman pool-info 命令收集硬件 buffer 池信息。

9.2 转发不通问题

9.2.1 故障描述

以太网接口所在路由器作为中间设备转发流量时,流量转发不通。

9.2.2 故障处理步骤

- (1) 在没有流量转发的情况下,确认以太网接口与直连设备是否可以ping通,如果不通,请参见 "<u>9.1</u>无法ping通直连设备问题"处理。
- (2) 如果可以 ping 通,则可以通过 debugging ip packet 命令打开设备上的 IP 调试开关,查看 IP 报文收发是否存在异常情况。
- (3) 如果上述步骤无法具体定位故障,则收集如下信息,并联系 H3C 技术支持人员。
- 在 probe 视图下,通过 **display hardware internal module** *interface-name interface-number* **statistics** 命令收集接口统计信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **status** 命令收集接口信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 1**命令收集接口 FPGA 信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 2**命令收集接口 MAC 信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 3** 命令收集接口 PHY 信息。
- 对于 FIP-300/FIP-310/SAP-16EXP,在 probe 视图下,通过 display hardware internal nae slot *slot-number* freein 命令收集接口硬件 buffer 池信息。
- 对于 FIP-240/SAP-4EXP,在 probe 视图下,通过 display hardware internal dpaa slot *slot-number* bman pool-info 命令收集硬件 buffer 池信息。

9.3 转发丢包问题

9.3.1 故障描述

以太网接口报文转发时发生丢包问题。

9.3.2 故障处理步骤

- (1) 检查两端端口状态是否一直 UP,并使用 display interface 命令查看入/出方向的报文统计是 否增长。为方便查看,也可以使用 reset counter interface 清空当前端口的报文统计结果再 进行观察。同时,查看对端是否有发送/接收报文统计。检查端口错包统计是否持续增长。
- (2) 如果上述步骤无法具体定位故障,则收集如下信息,并联系 H3C 技术支持人员。
- 对于 FIP-300/FIP-310/SAP-16EXP,在 probe 视图下,通过 display hardware internal poe slot *slot-number* statistics 命令收集统计信息;
- 对于 FIP-240 HIM 槽位的以太网接口,在 probe 视图下,通过 display hardware internal himadp slot *slot-number* cnt 命令 收集统计信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **statistics** 命令收集接口统计信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **status** 命令收集接口信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 1** 命令收集接口 FPGA 信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 2**命令收集接口 MAC 信息。
- 在 probe 视图下, 通过 **display hardware internal module** *interface-name interface-number* **reg 3** 命令收集接口 PHY 信息。
- 有跨板流量转发时,在 probe 视图下,通过 display hardware internal ibd pkt-info slot slot-number slot-number 命令收集板间统计信息。

9.4 故障诊断命令

命令	说明
display interface	查看接口信息
display arp all	查看所有的ARP表项信息
display counters rate inbound interface	查看入接口速率统计
display counters rate outbound interface	查看出接口速率统计
display hardware internal module interface-name interface-number statistics	查看接口可维护统计信息
display hardware internal module interface-name interface-number status	查看接口状态信息
display hardware internal module interface-name interface-number message	查看接口配置信息
display hardware internal module interface-name interface-number reg 1	查看接口FPGA信息
display hardware internal module interface-name interface-number reg 2	查看接口MAC信息
display hardware internal module interface-name interface-number reg 3	查看接口PHY信息

命令	说明
display hardware internal himadp slot slot-number cnt	查看FIP-240上HIM以太网接口维护统计信息
display hardware internal nae slot slot-number freein	查看FIP-300/FIP-310/SAP-16EXP硬件buf信息
display hardware internal poe slot <i>slot-number</i> statistics	查看FIP-300/FIP-310/SAP-16EXP 丢包信息
display hardware internal dpaa slot <i>slot-number</i> bman pool-info	查看FIP-240/SAP-4EXP硬件buf信息
display hardware internal ibd pkt-info slot slot-number slot-number	查看业务板之间报文的统计信息
debugging arp packet	打开ARP的报文调试信息开关
debugging ip packet	打开IP报文调试信息开关
debugging ip icmp	打开ICMP调试信息开关

10 主备倒换故障处理

10.1 重启主用主控板时备用主控板也重启

10.1.1 故障描述

用 reboot 命令重启主用主控板时,备用主控板也重启。

10.1.2 故障处理步骤

- (1) 在原主用主控板启动完成后,使用 ftp 或 tftp 命令将存储介质中 logfile 目录下最新的 logfile 文件上传到文件服务器。
- (2) 查看 logfile 中 reboot 命令日志(类似 Command is reboot slot 0)到上次启动开始(类似 SYSLOG_RESTART: System restarted)这段时间是否出现过类似 Batch backup of standby board in slot 1 has finished 字符串。
- 如果没出现过,则表示是在原备用主控板未启动完成的情况下,因重启主用主控而被动变成主用主控板,这种情况下备用主控重启属于正常现象,无需处理。下次重启前注意确保备用主控板批量备份完成(即已经出现过类似 Batch backup of standby board in slot 1 has finished 日志),再用 reboot slot 命令重启主用主控板。
- 如果出现过,请联系 H3C 技术支持人员。

10.2 备用主控板意外变成主用主控板

10.2.1 故障描述

正常运行过程中, 主用主控板重启, 备用主控板意外变成主用主控板。

10.2.2 故障处理步骤

- (1) 在 probe 视图下,通过 display hardware internal util slot *slot-num* rbinfo 5 detail 查看重 启记录。
- (2) 如果最近一条记录为 slave-rob,则表示是因备用主控板未收到主用主控板的报文而切换成主 用主控板,请等待原主用主控启动完成后,联系 H3C 技术支持人员定位。
- (3) 如果未出现过 slave-rob 记录,则表示是主用主控板自身异常导致重启,请在 probe 视图下, 通过 display hardware internal util slot slot-num rbinfo 5 detail 命令查看重启记录,用 display kernel exception 2 verbose slot slot-num 查看异常记录,并联系 H3C 技术支持人 员定位。

10.3 故障诊断命令

命令	说明
display kernel exception number slot slot-num	显示异常信息
display hardware internal util slot slot-num rbinfo	显示重启信息
display hardware internal mss slot <i>slot-num</i> information	显示驱动主备倒换模块信息
set hardware internal mss slot <i>slot-num</i> heart-beat rob { disable enable }	使能或禁止备用主控板抢主

11 子卡故障处理

11.1 子卡接口不可见

11.1.1 故障描述

子卡已经安装,但是 display interface brief 却看不到子卡上的接口。

11.1.2 故障处理步骤

- (1) 执行 display device verbose 命令,确认子卡类型以及在位状态。
- (2) 确认子卡类型与接口类型一致,查找接口模块手册确认所在业务板是否支持该子卡。
- (3) 如果上述操作还是无法解决故障,请通过 display hardware internal util slot *slot-num* nvlog *start num* 收集 log 信息,并联系 H3C 技术工程师。

11.2 子卡不在位

11.2.1 故障描述

设备上插有子卡,但是 display device verbose 却看不到子卡信息。

11.2.2 故障处理步骤

- (1) 查找设备接口模块手册,确认所在业务板是否支持该子卡。
- (2) 在 probe 视图下,执行 display hardware internal pci device slot *slot-num* 命令,例如:不 识别的子卡插在 slot 5 subslot 2 上,执行命令如下:

```
[System-probe]display hardware internal pci device slot 5
... ... ...
<02:05.00> pex8624 unit 1 port 5
<09:00.00> tsi384 linking subslot 2
<10:00.00> pci device in subslot 2
<02:06.00> pex8624 unit 1 port 6
```

<14:00.00> fpga for subslot 2

```
... ... ... ...
```

如果执行结果中,不存在信息"pci device in subslot 子槽位号",请联系 H3C 技术支持人员。 否则,继续执行下面的步骤。

11.3 故障诊断命令

命令	说明
display hardware internal util slot slot-num nvlog start num	显示nvlog记录的日志信息
display hardware internal pci device slot slot-num	查看PCI系统的节点信息
display hardware internal pci config bus:dev.func slot slot-num	查看PCI节点的配置寄存器

12 NetStream无法正常统计报文故障处理

12.1 主备链路切换后再切回来NetStream无法正常统计报文

12.1.1 故障描述

开启 NetStream 功能的接口存在主备链路,当主链路发生故障切到备,再切回来后,执行 display ip netstream cache 命令看不到 NetStream 流缓冲区中有数据流的统计信息。

12.1.2 故障处理步骤

- (1) 确认当前开启 NetStream 功能的接口所在链路确实有数据流通过。
- (2) 执行 reset ip fast-forwarding cache 命令清除快速转发表中的信息。
- (3) 执行 display ip netstream cache 命令查看 NetStream 流缓冲区中是否统计到数据流的信息。
- (4) 如果上述操作无法解决故障,请通过 display current-configuration 收集当前设备的配置信息,并联系 H3C 技术工程师。

12.2 故障诊断命令

命令	说明
display ip netstream cache	查看NetStream流缓存区的配置和状态信息。
reset ip fast-forwarding cache	清除快速转发表中的信息。
display current-configuration	显示设备当前生效的配置。

13 IPv6 NetStream无法正常统计报文故障处理

13.1 主备链路切换后再切回来IPv6 NetStream无法正常统计报文

13.1.1 故障描述

开启 IPv6 NetStream 功能的接口存在主备链路,当主链路发生故障切到备,再切回来后,执行 display ipv6 netstream cache 命令看不到 IPv6 NetStream 流缓冲区中有数据流的统计信息。

13.1.2 故障处理步骤

- (1) 确认当前开启 IPv6 NetStream 功能的接口所在链路确实有数据流通过。
- (2) 执行 reset ipv6 fast-forwarding cache 命令清除 IPv6 快速转发表中的信息。

- (3) 执行 display ipv6 netstream cache 命令查看 IPv6 NetStream 流缓冲区中是否统计到数据流的信息。
- (4) 如果上述操作无法解决故障,请通过 display current-configuration 收集当前设备的配置信息,并联系 H3C 技术工程师。

13.2 故障诊断命令

命令	说明
display ipv6 netstream cache	查看IPv6 NetStream流缓存区的配置和状态信息。
reset ipv6 fast-forwarding cache	清除IPv6快速转发表中的信息。
display current-configuration	显示设备当前生效的配置。