一、开始

Comware V7 盒式防火墙目前应用诸多局点,其中防火墙丢包问题较为普遍,丢包主要现 象是 ping 测试延迟丢包、访问业务卡顿等。Comware V7 防火墙有多个转发核,默认正常情况 下是单转发核处理流量报文,如果出现 CPU 高和单个转发核高的情况都会导致丢包现象。此 外各个型号防火墙的会话规格不同,应保证设备的会话在规格内,超过了规格也会产生丢包问 题。针对目前 Comware V7 防火墙的丢包问题,主要从以下几个方面来排查定位:查看 CPU 状态是否异常、查看转发核是否存在单核打满、查看历史会话是否异常、查看 Top-statistics 是否 存在异常的源 IP 地址等。

二、流程图相关操作说明

1、查看 CPU 状态是否正常

CPU,称为中央控制器,是一块超大规模的集成电路,是一台网络设备的运算核心(Core)和控制核心,对于 NGFW 系列产品的 CPU,所有的流量都需要上到 CPU 处理,因此 CPU 的性能和状态影响设备的转发性能,NGFW 盒式防火墙的 CPU 状态可以通过以下命令查看。

命令: display cpu summary slot X(X代表设备在 IRF 中的成员编号)

display cpu history slot X(X代表设备在 IRF 中的成员编号)

display cpu control-plane slot X(X代表设备在 IRF 中的成员编号)

display cpu data-plane slot X (X代表设备在 IRF 中的成员编号)

例如:使用命令 display cpu summary 可查看最近 5 秒、1 分钟、5 分钟的 CPU 占用情况。

<h3c< th=""><th>>display cp</th><th>u summary</th><th></th><th></th></h3c<>	>display cp	u summary		
Slot	CPU	Last 5 sec	Last 1 min	Last 5 min
1	0	85%	86%	85%
2	0	0%	1%	1%

使用 display cpu history 命令显示最近 60 个采样点的 CPU 值,以坐标的形式显示 CPU 历 史利用率信息,如下:

<h3c2< th=""><th>>displa</th><th>ay c</th><th>epu his</th><th>story</th><th>slot</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></h3c2<>	>displa	ay c	epu his	story	slot	1							
100%													
95%													
90%													
85%	####												
80%	####												
75%	####												
70%	####												
65%	####												
60%	####	#											
55%	####	#											
50%	####	#											
45%	####	##											
40%	####	##											
35%	####	##											
30%	####	##											
25%	#####	##											
20%	#####	##											
15%	#####	##											
10%	#####	##											
5%	#####	##											
			10		20		30		40		50		 60
			10	CI		ge	(Slot	1	CPU	0)	last	60	minutes
	(SYSTE	(N		C	<u>Ju u</u> Ju	80	(0101	1	010	07	rast	00	minutes

使用命令 display cpu control-plane 查看控制平面 CPU 利用率的统计信息,如下:

```
<H3C>display cpu control-plane
Slot 1 CPU 0 CPU usage:
18% in last 5 seconds
18% in last 1 minute
18% in last 5 minutes
Slot 2 CPU 0 CPU usage:
17% in last 5 seconds
16% in last 1 minute
17% in last 5 minutes
```

使用命令 display cpu data-plane slot X (X 代表设备在 IRF 中的成员编号) 查看数据平面 CPU 利用率的统计信息。

<h3c>display cpu data-plane</h3c>	
Slot 1 CPU 0 CPU usage:	
85% in last 5 seconds	
86% in last 1 minute	
85% in last 5 minutes	
Slot 2 CPU 0 CPU usage:	
0% in last 5 seconds	
0% in last 1 minute	
0% in last 5 minutes	

2、是否开启策略加速

NGFW V7 防火墙从 D022 分支开始使用的都是安全策略,安全策略加速是默认开启的, D022 之前的分支版本使用的是域间策略,域间策略策略加速默认是不开启的。在对基于会话 的业务报文(如 NAT、ASPF等)进行规则匹配时,通常只对首个报文进行匹配以加快报文的 处理速度,但这有时并不足以解决报文匹配的效率问题。例如,当有大量用户同时与设备新建 连接时,需要对每个新建连接都进行规则匹配,如果对象策略内包含有大量规则,那么这个匹 配过程将很长,这会导致用户建立连接时间超长,CPU 会增高,从而影响设备新建连接的性能 如延迟丢包等现象。

对象策略加速功能则可以解决上述问题,当对包含大量规则的对象策略使能了加速功能之 后,其规则匹配速度将大大提高,从而提高了设备的转发性能以及新建连接的性能,通过命令 行进行查看对象策略组是否激活。

[H3C]display object-policy accelerate summary ip Object-policy ip test

D032 新版本分支中安全策略加速功能默认开启,且不能手动关闭,如下几种情况会导致 安全策略加速功能失效。

(1) 激活安全策略规则加速功能时,内存资源不足会导致安全策略加速失效。

若安全策略规则中指定的 IP 地址对象组中包含排除地址和通配符掩码,则会导致安全策略加速功能失效。

(2)安全策略加速失效后,设备无法对报文进行快速匹配,但是仍然可以进行原始的慢速匹配。

(3)为使新增或修改的规则可以对报文进行匹配,必须激活这些规则的加速功能。

(4) 激活安全策略规则的加速功能时比较消耗内存资源,不建议频繁激活加速功能。建

议在所有安全策略规则配置和修改完成后,统一执行 accelerate enhanced enable 命令。

(5) 若安全策略规则中指定的 IP 地址对象组中包含用户或用户组,则此条安全策略规则 失效,将无法匹配任何报文。

(6) 安全策略规则中引用对象的内容发生变化后,也需要重新激活该规则的加速功能。 例如,对象组中包含排除地址和通用符掩码会导致加速失败,新版本中会报如下日志:

%May 24 08:19:21:458 2019 FJFZ-PC-WGWL-FW-F5000M-SJ5FB SECP/4/SECP_ACCELERATE_NOT_SUPPORT: Failed to accelerate IPv4 securitypolicy. Reason: An IP address object group is configured with excluded IP addresses for rule 105 of policy.

3、开启策略加速

D022 分支版本不自动加速,如果因为没有开启策略加速导致 CPU 高,可以通过如下命令 行开启策略加速。

[H3C]security-policy ip [H3C-security-policy-ip]accelerate enhanced enable

4、是否存在单核打满的情况

NGFW V7 防火墙有多个转发核同时工作处理报文,多核处理方式有两种,一种是逐包转发,一种是逐流转发。逐包转发性能高,基于报文处理,将报文依次发送到不同的 CPU 进行处理,但是不保证报文的处理顺序,可能会有乱序的风险;逐流转发性能低于逐流转发,基于流处理,设备可以基于五元组划分流,将五元组相同的一条流分配到同一个 CPU 进行处理,处理过程保证先进先出,V7 设备默认是逐流转发,如果单核被打满后设备转发性能会受到影响。

查看单核状态用 display process cpu | include kdr 命令,如下:

[H3C]display	process cpu	includ	e kdrvdp	
169	0.0%	0.0%	0.0%	[kdrvBoardTsk0]
170	0.0%	0.0%	0.0%	[kdrvcp0]
171	0.0%	0.0%	0.0%	[kdrvcp1]
172	0.0%	0.0%	0.0%	[kdrvdp2]
173	0.0%	0.0%	0.0%	[kdrvdp3]
174	0.0%	0.0%	0.0%	[kdrvdp4]
175	6.0%	6.0%	6.0%	[kdrvdp5]
176	0.0%	0.0%	0.0%	[kdrvdp6]
177	0.0%	0.0%	0.0%	[kdrvdp7]
178	0.0%	0.0%	0.0%	[kdrvdp8]
179	0.0%	0.0%	0.0%	[kdrvdp9]
180	0.0%	0.0%	0.0%	[kdrvdp10]
181	0.0%	0.0%	0.0%	[kdrvdp11]
182	0.0%	0.0%	0.0%	[kdrvdp12]
183	0.0%	0.0%	0.0%	[kdrvdp13]
184	0.0%	0.0%	0.0%	[kdrvdp14]
185	0.0%	0.0%	0.0%	[kdrvdp15]

前 2 个 vcpu 为控制核,负责管理和控制表项生成,后面 14 个转发 vcpu 处理业务。CPU 利用率 100 为极限,100/16=6.3%,单核到了这个数值就表明单核被打满了,此时需要查看会 话是否异常。

5、修改转发模式

如果出现设备单核打满情况,之前为逐流处理方式,可以通过更改为逐包方式后再查看单 核是否还存在被打满情况。

用命令行去更改设备转发模式,如下:

[H3C]forwarding policy ? per-flow Per-flow forwarding per-packet Per-packet forwarding

6、查看会话是否异常

NGFW V7 防火墙针对每个型号都有会话规格,超过了会话规格,设备转发性能会受到影响,可能会产生丢包,命令行可以查看会话并发与新建会话量如下:

[H3C]displa	y session	statistics	summary		
Slot	Sessio	ns TCP	UDP	Rate	TCP rate	UDP rate
1	6	21589	485	0/s	0/s	0/s
2	6	2	4	0/s	0/s	0/s

如果会话异常,则要查看 Top-statistics 统计,是否有单个源 IP 地址异常的情况;如果会话

量不大,则要看下接口 ARP 是否达到限速值。

7、接口 ARP 是否达到限速值

防火墙为了保护 ARP 进程软件上存在接口 ARP 限速,如果触发了 ARP 限速,会导致该 ARP 请求报文被丢弃,从而产生丢包的现象。

如下为某局点 ARP 限速导致丢包案例,防火墙旁路部署,防火墙采用二层聚合口与交换 机对接,组网运行一段时间出现丢包现象,在防火墙与交换机互联的接口进行抓包分析,发现 故障时服务器一直在发送 ARP 请求,但防火墙没有发送 ARP 应答报文。

Debug 发现有大量的 ARP 广播报文上送防火墙, ARP 报文速率超过了限速值, 因此后续报文会产生丢包。

*May 5 18:22:17:686 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded. *May 5 18:22:17:687 2019 HF-F5040-BJCLOUD MACFW/7/MACFW_ERROR: -Context=1; Frame discarded: ARP packet rate limit exceeded.

8、更改组网

针对这种情况需要修改组网,创建聚合子接口,将 Vlan-interface 改成三层聚合子接口,因为二层聚合接口的环境是属于 MAC 软转, ARP 有限速,改为三层聚合口后,是三层转发,对于 ARP 报文规格上没有限制。

9、查看会话 Top-statistics 是否异常

如果会话存在异常,首先需要开启 top 会话统计 session top-statistics enable, 然后查看 Top-statistics 是否存在会话异常的源 IP 地址,可以通过命令行 display session top-statistics last-1-hour 查看最近一小时的会话量。

[H3C]display session top-statistics last-1-hour								
Counting	Counting by source addresses:							
No.	Source address	Sessions						
1	172. 31. 0. 24	16360001						
Counting	by destination addresses:							
No.	Destination address	Sessions						
1	10. 72. 66. 36	636						

Web上通过【概览】--【运行监控】--【查看 top10 统计】路径查看。

10、将异常的源 IP 加入黑名单

如上排行 Top 1 的会话量在最近一小时达到了一千六百多万的会话,查看此 IP 地址是一个监控服务器,正常情况下此 IP 地址会话量很少,因此可以判定收到了攻击,产生了大量的攻击报文,导致会话量突高,可以通过把异常会话的源 IP 地址加入黑名单的方式来暂时规避攻击,命令行可以通过全局和安全域下两种方式加入黑名单。

[H3C]blacklist global enable [H3C]blacklist ip 172.31.0.24	//开启全局黑名单
[H3C]security-zone name test	
[H3C-security-zone-test]blacklist enable	//开启安全域黑名单
[H3C]blacklist ip 172.31.0.24	

在 Web 上可以通过【策略】一【安全防护】一【黑名单】如下路径来添加全局黑名单,或 者通过【策略】一【安全防护】一【安全域】路径来开启添加安全域黑名单。

НЗС	SecPath	F1030		の概覧	9 腔控	€ 策略	く 对象	● 网络	皇 系统		admin 👻	Q (?)
导航	1	黑名单										
🔊 🦁 安全策略		● 新建 × 删除 Ⅰ	按页面显示导出 📑 开启	全局应用						请输入要查询的信息	Q 查询	🔝 高级3
💿 💿 安全防护		VRF	IP地址类型			IP地	址	DS-Li	te对端地址	老化时间(秒)		编
攻击防范												
·受保护IP	_											
黑名单				新建黑	名单				?			
· 白名单												
安全域设置				VRF		公网			Ŧ			
·连接数限制				IP地	址类型	IPv4			*			
♥ uRPF				IP地	址				•			
				DS-I	ite对端地址(0						
◎ AFI				±.//.								
◎ 2 带穷答理				若化	511月(杉) 🕜	60-6	0000					
◎ ● 负载均衡						确定	取消					

11、查看是否属于硬件性能丢包

如果设备会话量很大,且没有异常的攻击流量,正常情况下高峰期出口流量很大,可能是 达到了设备性能瓶颈,此时需要查看 DMP 上对应的 NGFW 产品市场规格表,判断会话量和适 用带宽是否超过阈值,如果超过的话建议更换性能更高的设备。

可以在 probe 视图下通过 display hardware internal xlp poe para slot X 命令收集信息提供给工程师分析是否存在硬件性能丢包。

[H3C-probe]display hardware internal xlp poe para slot 1
POE POE_DISTR_CLASS_DROP_CNT:
POE_DISTR_C280_DROP_CNT : 0x0
POE_DISTR_C281_DROP_CNT : 0x0
POE_DISTR_C282_DROP_CNT : 0xf2fab14a
POE_DISTR_C283_DROP_CNT : 0x294c05a4
POE POE_DISTR_CLASS_DROP_CNT:
POE_DISTR_C280_DROP_CNT : 0x0
POE_DISTR_C281_DROP_CNT : 0x0
POE_DISTR_C282_DROP_CNT : 0x5e2e8a
POE_DISTR_C283_DROP_CNT : 0x605f83

通过 display system internal ip packet-drop statistics slot X 查看设备是否存在分片重组失败 报文丢包,观察 virtual fragment reassembly failed 参数对应数值如果存在过大,则证明存在分 片失败丢包。

防火墙处理大包的能力有限,如果正常业务中存在大量大包,需要修改运营商网关接口上的 TCP MSS 的值使得通过防火墙插卡的报文不要分片,以提升防火墙的处理性能。

[H3C-probe]display system internal ip packet-drop statistics s Slot 1:	lot 1
IPv4 packets dropping statistics:	
Drop orignal paket after fragmentation:	0
Match blackhole FIB:	0
Interface forbids forwarding broadcast packets:	0
Interface network status down:	21020
Unknown FIB forwarding type:	0
Drop layer 2 broadcast and multicast packets:	1500
Unknown protocol type:	0
IP version error:	0
IP header length error:	0
Packet length less than that claimed in IP header:	0
Invalid destination IP address:	0
IP options processing error:	0
IP checksum error:	0
Fragments in queue for virtual reassembly reach the limit:	0
Virtual fragment reassembly failed:	3258917
Dropped by control plane policing:	0
Expand packet buffer failed:	0
Packet buffer error:	0
Invalid fragment flag:	0
Packet length claimed in IP header larger than 65535 bytes:	0
Source or destination ip is loopback but not local:	0

12、更换高性能设备

例如 F1020 设备的混合包吞吐量为 1G, 但是高峰期流量超过了 1G, 这时候如果产生丢包 卡顿就跟设备性能有关, 需要更换高性能的设备。