PLAT 张月鹏 2018-12-11 发表

组网及说明

二层拓扑链路是利用设备间的邻居协议或MAC地址学习关系计算出来的链路。邻居协议包括LLDP、NDP、CDP、STP,这些协议都会记录对端设备信息,iMC基于这些对端设备信息直接计算出二层拓扑链路。

对于MAC地址学习关系计算方式,iMC从设备中采集BRIDGE-MIB和Q-BRIDGE-MIB数据,并计算设备间MAC地址学习记录的交集关系,如果交换机能够彼此学习到对方,且交集为空,则认为两台交换机之间存在链路。和IP拓扑链路不同,二层拓扑链路体现的是设备间的物理连接关系。

问题描述

某局点配置自定义拓扑,发现拓扑计算链路时有误,排查真实的网络环境,两台设备之间本来没有任何链路,但iMC却计算出一条链路。

以设备172.26.255.248和设备172.26.255.249为例,两台设备直间不存在链路。

过程分析

- 1、拓扑显示异常可能是前台显示问题,建议先清空浏览器缓存,更换浏览器进行尝试,iMC产品支持I E、Firefox及谷歌浏览器,登录时建议使用最新版本,避免兼容性问题。
- 2、查看拓扑中"高级配置",是否启用"路由拓扑",如有启用,尝试去掉勾选,确认后,重新同步设备

自定义拓扑[×]我的网络...×

高级设置		
É	注局设置 颜色设置	
关	闭时保存拓扑	
是得	否显示隐藏节点	
不适	透明度(0.5)	
根	据带宽显示链路	
双記	击标题关闭拓扑	
使用	用多行标签	
节я	点标签垂直距离	10 ⑦
自初	动布局的节点间距	1 ⑦
告報	警级别最高时是否闪烁	
是很	否默认手型操作模式	
启月	用路由拓扑	
是得	否显示云图和设备连线	0
是得	否显示云图与云图的链路	
是得	否捆绑链路	✓ 5 ⑦
使用	用链路渐近式删除	4320 ⑦
图标	际显示类型	3D图标 ▼
GIS	S地图类型	TianDitu 🔻
使用 图标 GIS	用链路渐近式删除 际显示类型 S地图类型	4320 ⑦ 3D图标 ▼ TianDitu ▼

确定 野汁 取消

3、查看iMC页面-系统配置-系统参数-二层拓扑配置是否启用STP邻居计算链路,修改为禁用,重新同步设备。

-	-	-	_	_	-

_	-727431HUE				
	启用STP邻居计算链路	否	•		
	启用邻居接口间MAC学习交集为空的校验	否	•		
	启用路由接口间链路计算	是	-		
	启用实时定位扩展	否	•		
	启用DismanPing	否	•		
	启用NetBios探测主机名	杏	•		
	启用伪造Ping报文	是	•	确定	

4、按如上方法排查iMC侧配置均为无问题,收集链路信息排查。

1) 在CMD模式下进入iMC安装目录;

2) 设置iMCROOT环境变量;

3) 进入调试命令所在目录\iMC\server\bin, 并执行imfcmd 3 16 -fl2topo.txt;

命令执行结束以后,将在\server\bin目录下产生一个l2topo.txt文件,该文件包含所有当前的二层拓扑链路内存信息。

4) 通过L2topo.txt排查链路信息,搜索设备172.26.255.248,查看相关链路信息,设备以NDP及LLDP 协议分别建立邻居,GigabitEthernet1/0/25以NDP建立邻居,对端设备为0x1cab34c9e9e0,对端接口 为GigabitEthernet1/0/25

以LLDP协议建立邻居,对端设备为0x5cc99932dad8,对端接口为GigabitEthernet1/0/2,可知邻居发现协议学习有误,排查网络真实环境,LLDP建立链路是正确的。

DevID: 90 SymbolID: 1228 IP: 172.26.255.248 IPMask: 255.255.0.0 NeighborChangedID: -1 STP Status: 2 Macs: 0x1cab34c9e900, 0x1cab34c9e902, 0x1cab34c9e903, 0x1cab34c9e904,

CDP/NDP Neighbor Info:

IfIndex: 25 IfDesc: GigabitEthernet1/0/25 OppIfIndex: 25 OppIfDesc: GigabitEthernet1/0/25 OppAddrType: 0 OppAddr: 0x1cab34c9e9e0 OppSysName: OppSysDesc:

LLDP Neighbor Info:

IfIndex: 25 IfDesc: GigabitEthernet1/0/25 OppIfIndex: 2 OppAddrType: 0 OppAddr: 0x5cc99932dad8 OppSysName: QCL-network-S5130 OppSysDesc: H3C Comware Platform Software, Software Version 7.1.045, Release 3116

....

5、设备侧关闭NDP邻居发现协议,系统视图下配置undo ndp enable,重新同步设备。

解决方法

4.1对于拓扑链路无法显示或者链路计算错误的问题,如排除iMC侧配置问题,可查看设备侧是否有协议未开启或协议学习错误的情况,常用的邻居发现协议有以下三种:

1) NDP (Neighbor Discovery Protocol,邻居发现协议)属于HGMP协议的一部分,用来发现直接相连的邻居设备信息,包括邻接设备的类型、软/硬件版本、连接端口、设备ID、端口地址、硬件平台等。该协议在V5设备上广泛使用,在V7设备上基本已经取消使用,处理V5问题时可优先考虑是否由于开启NDP协议导致链路学习错误。

常用的操作命令。

操作	命令		
进入系统视图	system-view		
进入以太网端口视图	interface interface-type interface-number		
使能端口的NDP特性	ndp enable		
常用的维护命令。			
操作		命令	
显示系统的NDP配置信息(包括报文发送 时间间隔和信息有效保留时间)		display ndp	
显示指定端口的NDP邻居信息		display ndp interface port-list	

清除NDP端口的统计信息

reset ndp statistics [interface port-list]

2) LLDP (Link Layer Discovery Protocol, 链路层发现协议) 提供了一种标准的链路层发现方式,可以将本端设备的信息(包括主要能力、管理地址、设备标识、接口标识等)组织成不同的TLV (Type/Length/Value, 类型/长度/值),并封装在LLDPDU (Link Layer Discovery Protocol Dat a Unit, 链路层发现协议数据单元)中发布给与自己直连的邻居,邻居收到这些信息后将其以标准MIB

的形式保存起来,以供网络管理系统查询及判断链路的通信状况,v7设备大多使用LLDP协议建立邻居 关系生成拓扑链路。

常用的操作命令。

操作	命令			
进入系统视图	system-view			
全局开启LLDP功能	lldp global enable			
进入二/三层以太网接口视图、 管理以太网接口视图	interface interface-type interface-number			
在接口上开启LLDP功能	lldp enable			
常用的维护命令。				
操作	命令			
日一口口口本地信自	display lide local information			

亚小LLDF平地信息	display hop local-information
显示由邻居设备发来的LLDP信息	display IIdp neighbor-information

3) CDP是思科发现协议,当设备与只支持CDP(Cisco Discovery Protocol,思科发现协议)不支持LLDP的Cisco设备直连时,可以通过配置LLDP兼容CDP功能与直连设备交互信息。

操作	命令	
进入系统视图	system-view	
开启LLDP兼容CDP功能	Ildp compliance cdp	
进入二层/三层以太网接口视图 或管理以太网接口视图	interface interface-type interface-number	
配置LLDP兼容CDP功能的工作 模式为TxRx	Ildp compliance admin-status cdp txrx	
配置CDP报文携带的Voice VLA N ID	cdp voice-vlan vlan-id	

4.2 收集链路信息的方法

1) 在CMD模式下进入iMC安装目录;

2) 设置iMCROOT环境变量;

3) 进入调试命令所在目录\iMC\server\bin,并执行imfcmd 3 16 -fl2topo.txt;

命令执行结束以后,将在\server\bin目录下产生一个l2topo.txt文件,该文件包含所有当前的二层拓扑链路内存信息。

附件下载: iMC 二层拓扑中设备间计算出多余链路问题.pdf